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VIIL. On the Flow of Electric Current in Semi-Infinite Media in which the
Specific Resistance ts a Function of the Depth.

By Louts V. King, F.R.S., Macdonald Professor of Physics, McGill Unversity,
Montreal.

(Received August 12, 1933. Revised February 12, 1934—Read February, 1, 1934.)

Section 1. Introduction.

In a previous paper* the writer has dealt with the flow of electric current from a point-
electrode at the surface flowing into a stratified medium each layer of which is of constant
specific resistance. In the present paper a general method is developed for determining
the distribution of surface potential when the specific resistance is a continuous function
of the depth. When this problem has been solved, the surface-potential distribution
for any arrangement of discrete or continuously distributed electrodes, which it may be
convenient to use in geophysical prospecting by this method, may be obtained by
addition or by integration if continuous line-electrodes are employed.

In dealing with the point-electrode there is some advantage in working with the
electrical current-function ¢. Using cylindrical co-ordinates (r, 2) referred to the
electrode as origin, the radial and axial components of current-flow across unit area are
given by

1 1
U= o> = = and Uy = E I T ma, (1)

while the lines of flow are given by ¢ = const.
On eliminating the potential V, it is readily seen that ¢ satisfies the differential

equation
2y 109 , 1 a< a¢>
oY 229 % 0, ... L. (2

e 7o Lo\ % ®)

* where p is the specific resistance of the medium at the point (r, 2).
If ¢, be the value of ¢ at any point on the axis of z, and ¢; that on the surface z = 0,
it is easily shown that the total current I introduced at the electrode is given by

=2 (Yo — d)) . . . . R )

* King, ‘ Proc. Roy. Soc.” A, vol. 139, p. 237 (1933). The reader is also referred to a recent paper by
Muskar (‘ Physics,” vol. 4, p. 129 (1933)).
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328 L. V. KING ON THE FLOW OF ELECTRIC

In geophysical prospecting, it is convenient to plot the quantity g, called the  surface-
gradient characteristic,” against the distance r from the electrode. This observable
quantity is given by

2
s _ 23V, gmp, [Qﬂ [P (4)

where 3V,/8r is the surface-potential gradient, and p, the specific resistance at the
surface z = 0, supposed to be known.

For a homogeneous medium, it is evident that g/p, == 1. When 5 /p, is plotted against
the distance from the electrode we obtain a straight line through the point p/p, = 1
parallel to the r axis. When the specific resistance varies with the depth continuously
or discontinuously, we obtain a curve departing from this straight line, from which the
nature of the “ electrical depth-constants ” is to be inferred. As yet no general method
of uniquely determining these “ depth constants ” from an analysis of the * surface-
gradient characteristic” appears to have been devised, although the solution of the
problem would seem to be facilitated by a process of analysis of field observations based
on HANKEL’s inversion theorem.*

As it is of practical importance in geophysical prospecting to be able to estimate the
effect of specific resistance gradients in the determination of electrical depth constants,
we proceed to outline the general theory for determining the surface-potential gradient
for a given law of variation of the resistivity with depth. This requires us to develop
the theory of Sturm—Liouville expansions pertinent to the problem under consideration,
as applied to a medium of continuously variable specific resistance bounded at z = £
by a perfectly insulating or conducting plane. Then by making % - «, a method is
suggested for obtaining a solution of the problem for an infinitely deep medium. It is
also possible to extend the theory to a discontinuously stratified medium in each layer
of which the specific resistance varies continuously with the depth. This later develop-
ment must, however, be left for a future communication.

Section 2. Determanation of ¥ for Medium of Varying Conductivity Bounded by Insulating
Plane at z = h.

It is easily seen that a general solution of the differential equation (2) is given by the
series
Y =BAZ (0,2 . K () +C df e (5)
s 0
where K, (x), in the standard notation, is the Bessel function of imaginary argument
having the convenient property
lim 2K, (z) = lim rAK; (vA)=1. . . . . . . . .. (6)

>0 r~>0

* See ‘ Proc. Roy. Soc.,” A, vol. 139, p. 237 (1933).
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'Z (2, ) 13 a solution of the differential equation of the Sturm -Liouville type*

d*Z | 1dpdZ

o— 2"— D e R
T tigs TE=0 (7)

+
so chosen that Z (a,, z) = 0 over the plane z = 0.

The summation is extended over successive values of the parameter A obtained as
roots of an equation of condition.

Since Z (1, 0) = 0, it follows from (5) that ¢, = 0 on z = 0. Since there is no flow
across the insulating plane z = &, it follows from (8) that I = 2r ({),—, for all values
of 7, as a result of which it is seen from (5) that

A A

Z(ah) =0, and I= 2rC j"dz/p. ......... (8)
. 0 .

Thus the equation of condition determining the parameters 2, is

SOCIETY

ZOwh)=0. ... (9)

If we now take a point on the axis of z where » = 0, it follows that I = 2= {,, so that,
making use of (6), the coefficients A, are determined by the Sturm-Liouville expansion

OF

_ oj ‘fj SAZ (M2, (0<z<h) - . ... .. (10)

where C is given in terms of I by (8).

If Z, and Z, be any two solutions of (7) corresponding to any two different values
Ay and 2, of the parameter 1, it is easy to prove, by multiplying the differential equation
in Z; by Z,, and that in Z, by Z,, substracting and integrating between limits 2, and z,,

that ‘
Ot — ) o2 de = [ {za 'fiz 7, %}] ..... (1)

It is convenient to regard the left-hand side of (10) as a particular solution of equation

) ¢

S

(7) corresponding to A = 0. Denoting Z, = r dé/ p, it follows as a particular case
. i h
of (11) that - : :

g ggn [ (g8, &
efonsd=|o (2% -2l 020

SOCIETY

If now we take the limits 2, and 2, to be 0 and % respectively, then in view of the

* Incg, “ Ordinary Differential Equations,” Chaps. X, XI, Longmans, Green and Co., 1927. Differential
equations of the type (7) first made their appearance in the theory of heat-flow in a bar whose thermal
conductivity is not constant, but is a function of the distance from one end. The theory of the present paper
is of course applicable to problems of heat flow, and to distribution of potential in dielectrics of variable
specific inductive capacity.

OF

2 U 2
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330 L. V. KING ON THE FLOW OF ELECTRIC

equation of condition (9), which requires that Z, and Z, both vanish at z = 0 and z = &,
we have,

h
j 0ZiZadz=0, (Ay % Ag). « o v oot (13)
0

We may now obtain the coefficients A, appearing in (10) by multiplying each side by
pZ (2, 2) and integrating between the limits 0 and h. It follows from (13) that all
terms on the right vanish except those for which A = A,. On making use of (12), the
integral on the left is easily evaluated. We thus obtain the result

1/dZ\ . [ )
e I A R L "

where we have Written Z, to denote Z (1, 2).
Here o, denotes the specific resistance at the surface z= 0. The last equality is

derived from the second by integrating by parts and making use of (7), which may be
written in the form

d/ dZ
- (o El?) e =0. . . (15)

AN

Since equation (11) is valid for any two values A, and A, of the parameter 1, it follows

that
oZrd = lim | —f [z, UZ_Z_z}]
j o2t dz }3{31 IJ\,, — x”{zz “dz % dz )1’
Evaluating the limit in the usual way, we obtain the result

0Z oL 0*Z
j szz % {a)\ a—- Zm}, ....... (].6)*

which can usually be further simplified when a is a root of an equation of condition.

Special case.—In many problems we may write Z (2, 2z) = Z {) (z + a)}, where a is a
constant.

We then have
L_zdl BL _\iL z
on  Ade’ a0z Adz | AdPA'

and the general result (16) takes the more explicit form

rp[z{)\(z_{_ )]zdz_P(z-f—a){(dZ) +;\2Z2+l§£ Z_d‘_Z} 2)\22

ClZ
222 o dz’ T dz 2

Z,

in the derivation of which we have used equations (12) and (15).

* This procedure is sometimes referred to as an application of I'Hospital’s rule (Warson, “ Bessel
Functions,” § 5.11.)
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If we now make use of this result in (14), we obtain the following formula for the
coefficient A,, noting that Z vanishes for z = 0 and z = k.

_Te, (dZ4/d2)...
" o+ o @z /a4 2028

A,

The term A2Z? is retained in the formula, although Z, - 0 at both limits, in view of
the requirements of Section 4 in which the limiting form of A, when h > « is useful in
attaining ¢ for a medium of infinite depth.

It should be emphasized that (18) is only applicable when the law of variation of o
with depth is of such a character that the differential equation (7) for Z admits of solutions
in terms of a variable of the form A (z + a). In other cases the more general integral (16)
should be employed.

When the coefficients A, have been determined by the use of the appropriate formulz,
it follows from equations (4), (5) and (8) that the ‘ surface gradient characteristic ” is
given by the expansion

E_ — __7_‘ oy — r 2
Ps 1 <dz >,_ r 2o/ + i 285 A, (dZ,)dz),_, . v2K, (r2,), . . (19)
0

the summation being extended over values of 2, given by the equation of condition

Z (A, B) = 0.

Section 3. Determination of & for Medium of Varying Conductivity Bounded by a
Perfectly Conducting Plane at z = h.

Since the stream-lines in this case cut the plane z = & everywhere at right angles,
the boundary condition is evidently (3¢/dz),_, for all values of . It follows from (5)
that C = 0, provided that e is finite at the boundary, while the equation of condition
determining the parameters A, in the expansion

$=SAZ(M2) NK (PN - . (20)

18 (dZ/dz),.n= 0. By taking a point on the axis 7= 0 in the interval 0 < z < h,
when I = 2r{,, we see that the coefficients A, are determined from the expansion

V@r) =ZAZ(w2). (21)

Proceeding as in Section 2, making use of (13) and (15), we find that the general formulee
for A, are the same as (14). An inspection of (17) shows, furthermore, that the special

formula (18) with (dZ,/dz),., = 0 is applicable, while the first term in the expansmn
(19) is omitted, in view of the fact that C = 0,
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332 L. V. KING ON THE FLOW OF ELECTRIC

Section 4. Determination of § for Medium of Varying Conductivity of Infinite Depth.

It is obvious that the physical problem limits the character of ¢ as a function of the
depth. The fundamental equation (7) requires that both p and dp/dz be continuous
functions of z and single valued in the interval for which the equation is valid. At the
surface z = 0 the specific resistance p must be neither zero nor infinite. If the law of
variation of specific resistance with depth gives zero or infinite values of p in the interval
0 < z < «, the problem reduces to that of Sections 2 or 3, 4 being the least value of z
for which p is infinite or zero respectively.

When p is neither zero nor infinite in the interval 0 < z < ®, we seek a solution for ¢

of the form
dz
¢=j 6 (0) Z (r, 2) 1K, (n)dx+0j L 22)
where Z (1, z) is a solution of (7) which vanishes for z = 0.
The total current flow across a surface of revolution swept out by a plane curve having
one extremity on the axis 7 = 0 at z = o, and the other on the surface z =0 at r = »
is I. It follows from (3) that the constant C is given by

I:%C[:%, ............ (23)

if the law of variation of specific resistance is such that the above integral is finite :
otherwise the last term in (22) is not required.

Since I is also the total current flow across a surface of revolution swept out by a plane
curve having its extremities on the axis » = 0 at any depth 2, and the other on the surface
z = 0 at any distance r from the axis, it follows, since Z (2, 0) = 0, that ¢ (1) must be
determined from the integral equation

w0 _(_l_z_
1 Lde.
2r [ d2
)%
When C = 0, the left-hand side of the above equation is simply I/(2r).

For a limited number of special laws of variation of p (2) with depth 2, the differential
equation (7) for Z (1, z) gives rise to functions for which known inversion formule exist.
When this is not so, a solution of the problem may sometimes be derived by intro-
ducing a perfectly insulating or conducting boundary at z= k. The solution of this

“ bounded problem ” may be obtained by the procedure of Section 2 or 3. '
If we now make & -~ o the roots of the equation of condition will become everywhere

dense, and the series (5) for ¢ will, in the limit, become a definite integral of the form (22)
The following simple example will illustrate the procedure. :

=§:¢(x)z(x,z)dx. e (24)
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Consider a homogeneous medium bounded by an insulating plane at z=h. The
solution is

Irz  2r 2.
== = C e e e e e e e 25)*
b= |2+ ZsinneK, () | (25)
The summation is extended over the positive roots of the equation of condition
sin 2,5 = 0, so that %, = sn/h.
Since A,y; — A, = w/h, we may write (25) in the form

I [n2 D , .
$ = 53 [7 -+ 27211 sin 22K, (rA,) (Mg — )\3)] e e (26)
If we now make % - oo, the first term drops out, and in the limit the summation
becomes a definite integral having limits 0 and «. We thus have for an infinite medium

of constant specific resistance

I 2z

_Irge . _ I
$ = “jo K, (2) sin Az dn = o T

5 .27
The same result follows if we apply this procedure to the solution for a homogeneous
medium bounded by a perfectly conducting plane at z = A. = A further example is given
in § 7 of the writer’s previous paper.
A generalization of this procedure is now obvious. Referring to equation (5) we write
the summation in the form

S AZ (A, 2) . 7AK, (r) = 2 i"‘f}f—i L (M 2) . PAKy (PA) (et — Ay + . (28)
s s Mgy s
where A, and A, are two successive roots of the equation of condition for which a
general formula may sometimes be derived.}

If we then examine the ratio A,/(A,,, — A,), with A,, given by (18), for large values
of h, using the equation of condition, it is found in & number of particular cases that in
the limit as % >  and the distribution of roots becomes everywhere dense,

lim {A,/(Ryer — M)} = ¢ (1),

a known function of A,. In these circumstances the right-hand side of (28) becomes,
in the limit,

f é (1) Z (1, 2) . 1K, (r2) da.

* ¢ Proc. Roy. Soc.,” A, vol. 139, p. 245 (1933).

t The general theory of the distribution of roots of functions of the Sturm-Liouville type is dealt with
by IncE, “ Ordinary Differential Equations,” Chap. XXI, Longmans, Green and Co., London, 1927.
Formule connected with the roots of Bessel functions are given in Grav, MaTTEEWS and MacROBERT,
“ Bessel Functions,” Macnillan’s, London, p. 260, 1931 ; WaTson, Theory of Bessel Functions,” Chap. X,
1922, Camb. Univ. Press.
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334 L. V. KING ON THE FLOW OF ELECTRIC

The limits of integration are usually 0 to o, but in general will depend on the distri-
bution of the roots of the equation of condition.

When the medium is bounded by a perfectly insulating or conducting plate at z = ,
the methods of Sections 2 and 3 may be applied to determine ¢ for a more general type
of vertical line-electrode from which the current flow at depth z, between z and z + dz
is I (2) dz, and I (2) is a single-valued arbitrary function continuous or discontinuous.
For a medium of infinite depth we have to solve an integral equation of the type (24)
in which the left-hand is a prescribed function of z. The procedure of the present
section enables ¢ (1) to be found, and suggests for functions Z (A, z), solutions of the
Sturm-Liouville equation (7), types of inversion formulse of which the Fourier integral,
HaNxkEL’s inversion formula and WEBER's integral theorem are particular examples.

Although the procedure of making 4 tend to infinity may introduce serious theoretical
difficulties, the writer has found the method useful in suggesting the form of the required
solution which it is then possible to establish rigorously by contour integration.

Section 5. Special Solutions for ¢ by the Use of Known Inversion Formule.

Although the methods outlined in the preceding sections can be depended on to give
solutions for any law of variation of specific resistance with depth for which the
differential equation (7) for Z (2, ) entering into the general formula (27) can be solved,
it is often advisable to attempt a solution which depends on some known or independently
derived inversion formula. We proceed to consider a number of simple illustrations.

Example 1. Semi-Infinite Medvum of Constant Specific Resistance, p/p, = 1.

The general procedure is well illustrated by this trivial example. An assumed solution
of the form

q»:j:qb(x) sin Az . ar K, (ar) da, SRR (29)

evidently satisfies the differential equation (2), (or 7), and gives ¢, = 0 over the surface
z=0.

In view of (3), ¢ = ¢, when r -0, so that for all values of z between the limits
0 < 2z < w0, we must have

! r ¢ (2) sin Az da, O<z<@) oo (30)

or Jo
On making use of the known result,

j sin lz.él:%n,
0 A

valid for 0 <z < o, the solution of (30) as an integral equation is, obviously,

¢ (1) = L/(=*2).
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If we now substitute in (29), the solution for ¢ is

o . drn 1 2
xp—EEL ar K (A7) sin kz—)\——ég(——-————ﬂ_l_ A

(31)
while an application of (4) to either term of (31) gives p/p, = 1, as we should expect.*

Example 2.  Exponential Resistance Gradient, p = p, e, (0 < m < = ).
Equation(7) for Z takes the simple form

A A

OF

A

SOCIETY

OF

d*Z dZ
— —2m =4+ NRZ=0. . ... ... ... 32
e P 0 (32)
The solution of this equation which vanishes at z = 0 is
Z (n, 2) = €™ sin pz, where p=(2—m?): . . ... (33)
We therefore assume a solution for ¢ of the form
o - dz
p=¢ ¢ (p)ysinpz. 2K, (rN)dp. +-C | =, . . . .. (34)
Jo o f
which is of the type (25), except that it is more convenient to use the variable u.

Since the flow across an infinitely deep cylinder at » ~ o remains finite, it is readily
seen that we must have C = 0.

Considering the flow across a surface of revolution swept out by a plane curve between
any point on the axis of z and the surface, we have, according to (3), since ¢, =0,
2ny, = I for all values of z. On writing » — 0 in (34), we see that the solution of the
problem depends on the possibility of determining ¢ (p) from the integral equation

I —mz — on 1
5o = 0¢(u)smp.zdu. T 139

If we now made use of the well-known integral
R S P
. jomdu—%ne s (7n>0,z>0),
we evidently have

I w
bW =Gatm (36)

It is readily seen that differentiation of (34) under the integral sign is permissible, the

simplest criterion for differentiability being satisfied. HFquation (4) then gives
E — g’f _9;4;> 2 J ” u? 2 2)}
-z ¢<az Bt ==t U CRRL EAC)
* In deriving (31) we have integrated by parts and made use of well-known formulse involving integrals
of the K-functions, for which the reader is referred to WaTson’s treatise, § 13.21 (10). The notation of
WaTsoN’s treatise is employed throughout this paper.

VOL. CCXXXIII.—A. 2 X
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336 L. V. KING ON THE FLOW OF ELECTRIC

Making use of the known integral

K, {o 2 st 2T 1
[ e = B,

valid for ¢ > 0 and R () > — 1, and remembering that K_,(t) = K, (1) = ({=/t)! e~
we find

S » P/Ps‘—e e e e e e e e e (39)
a remarkably simple result. _

Example 3.. Exponential Resistance Gradient, p = p, "™ (0 < m < »).

Following the procedure of Example 2, the appropriate form for ¢ is

¢==eﬂmf:¢(@)ﬁn;w;er1wx)dg+~ojz&y@ ..... (40)

The last term introduces the term {C/(2mp,)} (1 — e7?*). By considering the flow
of current across a cylinder of infinite radius and depth, we readily find C/(2me,) = 1/(2x).
We now make use of equation (3), 2= (¢ — ¢,) = 1 ; for the determination of ¢ () we
thus have the equation

1/(2r) = e™™ Jo ¢ (w) sin pzdp + {I/(2r)} (1 — e72),
which is identical with (35), so that making use of (36) we have

I 7 wsin pz 1 o2 |
b=e &“%_ A Ky () du + (1 ) ... (41)

in which A2 = p2 -} m?.
We readily find as before, making use of (4) and the integral (38), that in this case

ofes=2mr-+e™. . .. ... ... (42)

Example 4. Parabolic Resistance Gradient, o/, = (1 4+ z/a)?, (a > 0).

It is easily proved that the differential equation (7) for Z (1, z) may be solved in the
form Z = v +/o,/p, provided that v satisfies the equation

&

d? ar ldp
d—;;qL()@-_l——»—;};PZ)va, Where_Pz-P- i ce .. (48)

This result enables us to state a number of resistance gradients for which ¢ may be

* WaTson, § 13.47 (6). -
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completely determined. In the present problem the equation for v gives, simply,
v = sin Az, and by assuming a value for ¢ of the form

¢=j: ¢ (2)Z (%, 2).rA K, (n)dx+0jz dzfo, . . . .. (44)

it is a simple matter to prove that

T r v il SN

and

while the potential V at any point, (7, 2), is found to be

V= %%8 {(}g{—z_zz? — ginh~1 <'§> — log <§)1{ e e . (47

Example 5. Resvstance Gradient, o/p; = sech? ma . cosh?m (z —a), 0 =a < x).
It is evident from (43) that the differential equation for Z (1, z) may be solved in

terms of elementary functions if P satisfies an equation of the type % %’ + 3P? — m? =0,

since we then have P = 2m tanh m (2 — a). Hence by (43) we have the above law
for the resistance gradient, ¢ being a constant of integration.

The equation for v gives v = sin {z (32 — m?)!}, so that, writing p? = 22 — m?, we
assume a solution of the form

§ = sechm (z — a) . j: ¢ (r)sin pz. rA Ky (rA) dp + Ctanh m (2 — @),  (48)

and readily find ¢ (p) = (I/n?) cosh ma . w/(p2 + m?), and ultimately
?/os=mre ™ sechma +e™. . . . ... ... (49)

When mz is small, we have, o/p, ~ 1 — 2mz tanh ma - . . ., while when mr is small,
“Jos ~1 —mrtanh ma + . . ..

The resistance gradient just described is of some geophysical interest as p/p, decreases
to a minimum at z = ¢, and then increases indefinitely. The curve for 5/p, plotted
against r shows a corresponding minimum at ¢ = €™ cosh ma, and then increases,
ultimately following an asymptote through the origin of slope me=" sech ma.*

# Field observations of o/p, sometimes exhibit a general trend of this character which the result of this
example shows is not necessarily associated with the existence of strata involving discontinuities of specific
resistance.

2x2
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Section 6. Resistance Gradients, o/p, = (1 4+ z/a)*, (0 < a < w0, — 0 <m<— ®).

In order that ¢ be neither zero nor infinite in the interval 0 < z < «, the constant @
must be positive. Resistance gradients for which @ is negative require to be dealt with
by the methods of Section 2 or 8. The constant m is unrestricted, and may be positive
or negative.

In this instance the differential equation for Z (1, z) is

2
%§+;%f@+v7_o .......... (50)

of which the general solution is known to be

Zx(a+2l=@+27 A, M@+ +BI_, A(a+2)}] . . (BD*

where for brevity we write v = £ (m — 1).
It is convenient to express J_, in terms of J, and Y, by the formula

Y, ()= {J, (z)cos v&e — J_, (x)} cosec vm. . . . . . . . (52)

Case (1).—1 <m < w,or0 <v < o .—In the notatlon adopted, the solution of
(50), which vanishes for z = 0, may be written

Zir@+ 2= (a+27 Y, {a(e+ 2}, (@r) = I, {r @+ 2} Y, (@r)]  (53)

We have, furthermore,

*de _ o [ a
ju S = {1 (a+z> } ......... (54)
The appropriate expression for ¢ is
¢=ﬁ¢mzum+@ynmumm+o£%.....(%)

provided that ¢ (1) can be determined to satisfy the requirements of the problem.
If we consider the flow of current across an infinitely deep cylinder of infinite radius
we find from (54) that provided 0 < v < o,

C=2vp,l/(2ra). . . . . . . . . . . ... (56)

We now use (3), which expresses the fact that the flow of current across a surface of
revolution bounded by the plane z = 0, and having its vertex at any point of the z-axis

* Wartson, § 4.31.
T Warson, § 3.61 (3).
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is equal to I for all values of z ; as a consequence of making 7 - 0 in (55), and using (54)
and (56), we find that the integral equation for the determination of ¢ (1) is

L _av
2r (a + 2)
We are led from the considerations of Section 4 to expect that a solution of the above

equation can be found. In fact, it can be shown as a particular case of a general contour
integral that, for unrestricted values of v, positive or negative, (z > 0),

*Y, {Aa+2} T, (an) =T, {A(@+2} Y, (aN)dr _w/ a \M
jo Y2 (ar) + J2(ar) a2 (a -+ z> - 68T

On comparing (57) and (58), we see that ¢ (1) is at once determined, and equation (1)
gives

—_ 1l 2720 Vo (0 (@42} T, (a0) T, (1 (a+2)} Y, (ad)
= 2n [(1 + a> cho Yu2 (al) + ng (al) KO (7'}&) d)\

= f w $(IY, @+ 2} T, (@) — T, (@ + 2} Y, (@] dn. (57)%

-+ 2‘—;—' log 1‘] . (59)
On making use of the relation ‘
V@3, @) — T @Y, @) = —2/ma), . . ... (60)%

we easily find that (dZ/dz),_, = (2/z) a~¢*", and ultimately deduce after a few
simple reductions

P _2n "Ji) { 4 rKlmdx }
BT | T(dz 220 nj (@A) +J2(@n))” = " " (61)
where v =} (m —1),and 0 Sv < w0,

By using the procedure of Section 4, the reader will have no difficulty in establishing
the formula

_I(aZi@ta) oK g0 | Iv g,
‘P-—th }’0 Y2 (ar) + J.2 (ar) +—~j’0 P—-dz, cee (62)

valid for positive values of v, as the limiting form of the expansion (5) when % is made to
tend to infinity. From this result, (61) follows immediately from (4).
When v is negative, the appropriate solution of (50) is

ZO(@+a=(a+27[Y., 0@+ T, @) =T, @+ 2} Y, (@] (63)

* [Added Feb. 12, 1934.—The determination of ¢ () in (57) may also be effected by the use of WEBER’s
integral theorem. (‘ Math. Ann.,’ vol. 6, p. 154 (1873).) See also a paper by TrroEMARSE, ¢ Proc. London
M th. Soc.,” vol. 22, p. 15 (1924).]

T The proof of (58) as a result of contour integration is outlined in Appendix I. The integral is discon-
tinuous at z = 0.

1 Wartson, § 3.63 (12).
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Since the last term of (55) drops out when v is negative, we have to determine ¢ (1) in
the expression

b= P ML O K D 61

from a solution of

4]

st [ VY. 0@+ ) T @) =T, 0 @+ 2} Vo @] B (69)

in which we have written v = — n, so that u is positive.
We may now use (58) to determine ¢ (1), and, as it is at once evident from (52) that
Y24 J2=7Y_2-+ J_2 we finally obtain the formula

e -
Ps

_él_fr rK, (r2) da
=2 aJo Y2 (ar) -+ J.2 (adr)

when v = § (m — 1).
The expression for the potential V is of the same form as (59) with the omission of the
term in log 7.

Section 7. Discussion of Particular Cases of Resistance Gradient o/ o, = (1 + z/a)".

The formule (61) and (66) are of considerable generality, and the integral converges
rapidly, lending itself readily to graphical computation. In a few cases, when m is an
even integer, the integral may be evaluated in terms of known functions of 7/a, as in the
following examples.

Example 1. o/o,= (1 +2z/a)%, v= — 4.

Since Y_2 (a) - J_2 (Aa) = (&%J {1 + (32)"%, we have

»  r K (rr) dr m [“’ A2 K (M)(Jl)f_]
4(0 Y 00 7 700 2" L A Ky (r2) da JO 11 rig?

= dnra[fr o — 2 (Y (/a) — H_, (/a}]. . (60)*
and from the known formulse ‘

Y @=—Y(®), and H, ,()=1/r—H,(z), . . . . . (68)T

for Bessel functions and Struve functions we finally obtain the integrated form of (66) |
in terms of tabulated functions

/o, =1+ 3%/a® + Ix (1¥/a?) (Y, (v/a) — H, (t/a)}. . . . . . (69)

* WATSON, § 13.52 (9). The properties of the Struve functions H, (z) are given in WaTsoN’s treatise,
§ 10.4, while extensive tables are given following Chap. XX. '
+ Warsow, § 3.51 (4) and § 3.54 (2) : also §10.4 ().
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From the known approximations for Y, (#/a) and H; (#/a), valid for small values of #/a,

it follows that
N o/es — 1 —1/a+ (r*/a?) (y — log 2 + %) + § (1¥/a?) log (1/a) 4~ . ...

Example 2.  Homogeneous Medium, o/p, =1, v = — 4.

We have here Y_,2 (Aa) + J_;% (Aa) = 2/(x2a), and (66) gives, as we should expect,

&Z%Zj arK, (1) dx = 1.
P T & Jo

Example 8.  Linear Gradient, o/p; = 1 + z/a, v = 0.
In this case both (61) and (66) agree in giving,

'g?___irr 7K, (rA) da
— R O ES Y

which, apparently, cannot be evaluated in terms of known functions.

Example 4. Parabolic Gradient, o/po, = (1 + z/a)?, v =L
In this case (61) gives the simple law

o/es=1+7va, . ... ... (71)

a result already independently obtained in Section 5.

Example 5. o/o, = (1 + z/a)t, v= 3.
~ Proceeding as in Example 1, but employing the appropriate formula (61), we find

o/es =14 3r/a + $r*/a® + In (r2/a?) {Y, (r/a) — H, (r/a)y. . . . . (72

For small values of 7/a, this formula gives
o/ps ~ 1+ 2(r/a) 4. ...
Example 6. 5/p, = (1 + 2/a)®, v =13.
We easily find, .
Y2 (20) + I 2 (M) = (2/x) (24at + 332 + 9)/(ra)s.

- Since the factors of the quadratic in %42 are complex, it is readily seen by resolution
Into partial fractions that the infinite integral in (61) can be made to depend on an
integral of the type

j * 2K, (ax)

2
, e =7 (V. (@h) — He, (@h)},


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

342 L. V. KING ON THE FLOW OF ELECTRIC

dealt with in (72), but as & is complex for half odd integral values of v Z 3, the final
result depends on Y- and H;-functions of complex argument. The corresponding
general formula for Y,2 + J,2 when v is half an odd integer yields a polynomial in odd
powers of (ra)~* with simple coefficients.*

General Remarks.—It is interesting to note that when ¢~ w0, g/p, -1 for all values

of m. From the asymptotic formule for Y, and J,, it follows that
Y.2 (ra) + J.2 (na) ~ (2/n)/(2a),

and both (61) and (66) yield the correct result, 5/p, = 1.
When the values of v become large, whether integral or not, we may advantageously
employ the approximate formule for functions of large order.t '

In particular, if we make use of the results (v large),

Y2 (vsec B) + J,2 (v sec B) ~ cob B(/nv), (0 < B8 < 4m) }

Y,2 (v sech &) + J,2 (v sech a) ~ e~ e~ coth &

(73)

it is a simple matter to prove that the formuls of Section 6 are valid for the limiting case
of the gradient

o/e, = lim (1 T %} e (14)

and finally to reproduce the results of Section 5, examples 2 and 3.

Section 8. Direct Determination of the Potential V.

When the stream function ¢ has been determined by the methods described in the
preceding sections, the potential V may be determined by effecting the integrations
implied in equation (1).

In some cases there is an advantage in determining V directly, the solutions thus
obtained being expressed in terms of the Bessel functions J, and J.

It follows from (1) that the differential equation for V is

10 /r 8V> 0 <1 EV)
e b — (=== )=0; . ... ... 75

T@?’(pdf‘ +6z p 02 (75)
in terms of V the radial and axial current components are given by

_ 1oV and u—»—l—éy—. ........ (76)

! p Or

In the present paper, in which we deal with semi-infinite media for which ¢ is

* WaATson, § 7.51 (5).
T Warson, § 8.22 and § 8.4.
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continuous and neither zero nor infinite in the interval 0 <z < «, we confine our
attention to possible solutions of the type

V— j: $O)Z(0n2) . To ) dre o o oo (77)

It is easily seen from (75) that Z (2, 2) satisfies the differential equation

@CL _Ldedl oy
i 4= ML=0. . ... ...... (78)
In forming solutions of the type (77), the solution (if any) which vanishes as z - o must
be taken.
If, now, we integrate the current flow over a cylinder of radius » and depth z, the
result must be I for all values of » and z. For the particular type of solution (77), this

leads to an integral equation for ¢ (1)

_ 51; _ j: ¢ x(j) . i- <%>z=o' Py () dhe oo (79)

From HANKEL’s inversion theorem it immediately follows that the solution of (84) is

¢ () (dZ\ e,
) dzLo"“ R (80)

\

With this value of ¢ (1), the potential is given by (77), and, in particular, writing

z = 0, we have the surface potential V,, so that the “surface-gradient characteristic ”
1s given by

P 212 dV,

ps - :[ps _d; e e e e e & e & o s e s .

In these problems, the divergent integral
Vo= j: Jo (Ar) d2/2
sometimes appears in the solution for V. Since
-l = —j: Jy (M) dh= — 1/r,

the integral V, is to be interpreted as — log r +- const., and its appearance in the
expression for V implies the existence of an asymptote through the origin in the graph

of o/p, plotted against r.
We proceed to illustrate briefly the method of the present section by a number of

simple examples.

VOL. CCXXXIII.—A. 2Y
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Example 1. Exponential Resistance Gradient, o/p, = €, (0 < m < o).

We easily find on solving (78), and taking that solution which vanishes as z - o,

. _I£§ ] e-—-(;/.—-m)z
V=22 jo o M (82)

where p = /(22 -+ m?).
To evaluate the integral, we make use of the well-known formula

—mB

I —ue N & *
I,= Le S )=t (83)

where R = /(12 - 22).
If we multiply each side of (83) by r and integrate from 0 to » we find

e di(rh) 1, _ -
I———j Al = —{eT™—e™, .. ... .. 84
o= [ ol e (54)
and, differentiating with respect to z,
- oI, — r —uz — 1{ —mz__ % -mR}
Pl N J1 (r2) da =-1¢ i e e (85)

We now find from (82), after a few simple reductions,
_ AV _ I, { o1, — m Oz ~311}
= ant m2l, M (86)
from which the potential at any point (r, z) may be obtained by integration with respect

to 7.
On making z - 0, we easily find

o L R e PN ()

dr or | r r

and hence, ultimately,
ofos=2mr e ™, . . . . . ... .. (88)

agreeing with the determination of Section 5.

Ezxample 2.  Exponential Resistance Gradient, o/ps = e~ %, (0 <m < o).

Taking the solution of (78) which vanishes as z - « , we have

© ,—(u-+m)
V—I_st e 3Ty (r2) dn.

T 2nloptm

The procedure of Example 1 leads to the final result

* WATSON, 13.47 (4).
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Example 3.  Reststance Gradients, o/o, = (1 + 2/a)", (0 <a << ®), (—owo <m< ®).
Equation (78) for Z is

The solution of this which tends to zero as z - « 1is,

Z(h @+ 2 = (a+ 2" Ky O (@ + 2)).
With v = 1 (m — 1), as usual, we easily find that

_ 1o, >”“ " K, {r (a4 2)}
= (1+ L TR iE I LIS (01)
and
I 2\ (* K. {2 (@ 4 2)}
b=—o <1 + a) L e ona, L (92)
while on writing z = 0 in (91), we have for the surface potential
_ Lo, (" K, (2a)
— 2 50 B TG dr (93)

On the axis of 2, r =0, and ¢, = 0, while for z = 0,
o= — 1/(2n) . j: rJ, () da = — 1/(2r),

so that equation (8) is satisfied.

When m is an even integer (positive, negative, or zero), the ratio of the K-functions
in the above formule becomes the ratio of polynomials in (ra), and sometimes the
integral may be evaluated in terms of known functions. The following examples will
suffice.

(i) m= —2,v= — 4% Onremembering that K_, = K,, equation (93) gives

_ T, [ K, (2a) Toy (= _an
Vo= 2r jo K, (2a) Jo (rh) dh = j 1+ ax Jo (ar) .

Thus, in consequence of (81), we have

E_1- A g L D LD () — H ), - (99

in agreement with (24), and in the derivation of which we have made use of the formula

[[olen gpm 7K ol Y (05"

vaildfor —3 <R (v) < 2,and 0 <R (k) < .

* Watson, § 13.6 (7).

2v 2
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(i) m=0,v=—3% We have

V, = Ip,/(2r) . j: Ty () dn = Tp, /(2r) . 1Y,
so that g/p, = 1.
() m = 2,v=14%. Here

;”f <1+ >J (2r) da

giving 5/p, = 1 -+ 7/a, in agreement with formulee (47) and (71).
In general, the identity of the expressions for ¢ given in (92) with those obtained in
Section 6 can be established as a particular case of a theorem in contour integration.*
For purposes of graphical computation, the integrals in formulee (61) and (66) for g/p,
are more convergent than those in the corresponding formule derived from (93),

I, (* K, (2a)
o= 21”01{%( g Jo () dh =

E~=7’2j‘w—]i-il’c’—(l@. A dy (A7) dA.
0

By applying HANKEL’s inversion theorem to (101), we have

Kn) _ (53, 00) g,
K,()\a) 0 Ps r

If we now introduce for p/p, the solutions (61) and (66), interchange the order of
integration and make use of the integral

j: (K, (af) . T, (bl) dt = (bJa) . (@ 4+ B)% « . . . . .. (97)

we are led to the interesting result

K, (00) _2v | 42 r dt 0<v<®). . (98)

K, (2a) g ' w2aly (Y2 (at) + J2(at)} (2 + 22)¢

In the interval — o < v < 0, the first term must be omitted.
This result is typical of a large number of interesting integrals which may be estab-
lished by comparing the ¢- and V-solutions.

Example 4. Resvstance Gradient, o/p, = (1 + 2/a)™?
It is easily shown that equation (77) for Z (X, z2) may be solved in the form
Z = v \/p/p,, provided that v satisfies the equation,

d?v 14P | > __Llde
T <)\2+ + 1P )v=0, where P o d (99)

* Appendix I of this paper, Example 2.
T Watson, § 13.45 (2).
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For the resistance gradient of the present example, we thus find Z = e™*%/(a 4 2),
so that

.._I‘_I_P_S @© aZ)\ e—Az
V_nLl+arw+@%uﬂm, ....... (100)
~and in particular
C__["rdind
E=1 ) M (101)

agreeing with (94).

Example 5. Resistance Gradient, o [o, = cosh? ma . sech? m (z — a), (0 < a < ®).

This example is of some practical interest as representing a case where p/p, increases
to a maximum at z = @, and falls off to zero as z-> . The method of the above
example gives Z = ¢~*Y®*+" gech m (z — a), and

0 e~ ? A (AR +m?)

0 \/(;\2 + 1’)’&2) — m tenh ma A Jo (7‘7\) da. (102)

_____IPs » )
V= 5 cosh ma . sech m (2 — a) j

By writing z = 0 in the above expression, we at once obtain the surface potential V,,
but the result is not easily integrated. It may, however, by the use of SoNINE’S
formula,* be expressed as a convergent series of K,-functions by expanding the integrand
in powers of m tanh ma/(3® 4 m?)}, and integrating term by term.

Ezxample 6. Resvstance Gradient, o/p, = sech? mz.

By writing @ = 0 in (102) we obtain a simple result

_To, [® AJg () _Tp, e imv
Vo= 2 [0 (22 + m2)z dA o ¢ Tt (103)t
and

fee= (A +|m|/ryetmr. . . ... (104)

Section 9. Geophysical Applications. Determination of gradient of resistance from
surface-gradient characteristic.

It will be noticed from the particular examples worked out in detail in the preceding
sections, that if we expand the resistance gradient in the form

p=p,1+2me+...), . . ... ... (105)

the corresponding expansion of the “ surface-gradient characteristic” in powers of 7,
the distance from the electrode, is always of the form

p=p, 1 4+mr4+...). . . . .. ... ... (106)

* WaTsoN, § 13.6 (2).
+ Watson, §13.6 (2), with v =0and p= —%.
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This rule is found to hold when the medium is bounded by a perfectly conducting or
‘insulating plane, as well as in examples in which p is finite and continuous throughout
the interval 0 <2z < .

The proof of this result may be inferred from Examples 1 and 2 of Section 8, since
the resistance gradient (105) may be represented approximately by the exponential
gradient o/p, ~ €. The expansion of (88) or (89) corresponding to negative or
positive values of m leads at once to (106) as the corresponding approximations to g/e,.

[Added February 12, 1934.—Since the author’s paper was first communicated, there
has appeared an interesting method due to R. E. Laneer* for deriving the expansion
of p/p, in powers of z when 5/p, is given as a function of 7. Assuming that there is no
discontinuity in the resistance-gradient, the expansion is shown to be unique. Briefly
stated, the procedure referred to is as follows :—

The theory of Section 8 shows that the surface—potentlal may be expressed by the
integral
To,

Vo= 2n

j“’ F) T, ) dh, o o o (107)
0
from which it follows by (4) that

15 [

at = jo F (3) 2, (W) da

and hence by HANKEL's inversion theorem,

° dr
() j e L (108)
Should it be possible to expand F (1) in the form
F(x)_1+“1+“2+ +W+ ....... (109)

“for large values of A, LANGER’S theorem states that the law of specific resistance with
depth is given by the expansion

1log() oclz—l— z2+ z—i—%%—{—.... ..... (110)

In terms of @’s of the expansion (109),

oy = al. Kg = 2“2 - (112 g — 4“3 —_ 4“1“2 + 2“13
(111)

ay = 2 {8a,2a; — 3a,* — 4a,a5 — 20, -+ 40,}

* ¢ Bull. Amer. Math. Soc.,’ p. 814 (October, 1933). See also SLICHTER, ‘ Physics,’ vol. 4, p. 307 (1933).
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To determine the coefficient «,, we compute
2

¢1 = 2“2 — a]_z) ¢2 S 2“3- ¢n == 2an+1 + ?1 as+1a7l_~s- e e e (].12)
It is then proved by LANGER that
an= 5 g, 2t

r=1 8ar

We easily find from (110) and (111) that in terms of the coefficients of (109),

P—P(i)= 1+ 20,2 + 2 (a; + 02) 22 + % (a5 + 2a,a,) 2
s 4 2 (0 + 3405 + a2ay + Fa2) A4 ... . . . (114)

In order to determine the a’s of the above expansion from a field-graph of 5/p,, the
writer of the present paper suggests that the curve be fitted, if possible, to an expression
of the form

o/es=1+mr+SAe™". . . ... .. ... (115)

The terms under the summation represent the ordinates intercepted by the curve
and a parallel to the asymptote through 5/p,= 1. The constants A, and m, may then
be determined by Prony’s method for expressing a function tabulated at equal intervals
by a sum of exponentials. From (108) we obtain

and since X A, = 0, we have
o =m+ZAm, g, =% Am?, a3=0, a,=— 1T Amt . (116)

The graph of ¢ (2)/p, plotted against z according to (114) may be expected to reveal
features of interest without undue labour of computation.* The solution here dealt
with assumes p (2) to be a continuous function of the depth throughout the entire interval
0 <z < o, and does not contemplate discontinuities. A method of analysis suitable
for discontinuous stratifications is briefly described in Section 11.]

First Order Correction to Depth Determination of Conducting Stratum Covering Insulating
Bed Rock due to Surface Resistance Gradient.

It 1s evident from the general solution (19) that the graph of o/p, plotted against r
has an asymptote whose equation is ’

e Ps
£~ r/j- Bode . (117)

* [Added May 12, 1934—This point has recently been examined for known discontinuous
stratifications by A. F. StevENsoN, ¢ Physics,” vol. 5, p. 14, April, 1934.]
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It is important to note that the existence of an asymptote as shown in fig. 1 is in
itself no evidence of the existence of an electrically insulating stratum, since such an
asymptote will exist in a semi-infinite medium for

which r(ps /¢) dz remains finite.
0

i

If, however, it is certain from geological evidence
that such a stratum does exist at a depth which
it is not impossible to determine by measurements
of surface-potential gradients, the results of the
present section lead to a simple practical method of
correcting for a possible resistance gradient near the
, surface.

¢ FI(: ‘f‘ r Substituti.ng the approxim.at.e expansion of p/p,

from (105) in (117), and retaining only first powers
of mh, we have for the asymptote the approximate equation

/e~ (1/h) (L + mh + .. ),

while, according to (106), the equation of the tangent at the point (v/p,) = 1 is
o/ps ~ 1 + mr. Solving for the r-co-ordinate of the intersection, 7, we find at once,
h=T. ,

As a matter of practice in field measurements for depth determination of an insulating
stratum, it is important to take a sufficient number of surface-potential gradients near
the electrode to determine the graph 5/p, near » = 0 with such accuracy that by methods
of equal ordinates the slope of the tangent at the origin may be determined.* The
position of the asymptote may be determined by measuring the surface-potential
gradients at a distance of several times the suspected depth of the bed rock, preferably
for a number of azimuths; the simple rule just enunciated will then give the depth
corrected for a possible gradient of specific resistance.

Derivation of Surface Gradient Characteristic o/, from Two-Electrode Observations.

The analysis of the present paper is confined to the problem of determining the
electrical depth constants from surface-potential gradients due to a single electrode.
In practice it is, of course, necessary to employ at least two electrodes whose distance
apart should be several times as great as the depth which it is desired to explore. In
general, the direct interpretation of two-electrode gradients is not easy. We proceed,

* Quch a formula as that due to GREGORY and NEWTON,
I (@) = (Lfw) {Af (a) — $4%f () + $4%f (@) — A (@) +. . .}

may be employed in which w is the equal interval and A, A% A, ... successive differences of a function
f(a). (WarrTaker and RoBinson, “ The Calculus of Observations,” p. 35 (Blackie and Son (1924).)
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therefore, to show how to obtain the surface-gradient characteristic p/p, from two-
electrode observations, since the corresponding graph is much more easily analysed
and interpreted in terms of the depth constants. We suppose that observations are
confined to points in the line of the electrodes distant 21 apart, as a result of which it is
possible to plot a graph of dV,/dr against distance from one of the electrodes, fig. 2.

dvs _d
dar dar

I

I
i
|
!
|
l
]
/

Fie. 2.

If the specific resistance is everywhere a function of the depth only, the graph will be
symmetrical about an axis midway between the electrodes if 7 is measured in a positive
sense from each electrode ; and this symmetry is at once a test of the applicability
of the present theory. We therefore confine our attention to the left-hand portion
of the curve which may be plotted as an average of the two.

Measure r from the electrode O. Then, since I takes the opposite sign at the second
electrode, the surface potential due to the two electrodes at a point along the line
joining them is

Vo=V, (r) — V(2 — 1),
where V; (r) is the surface potential due to one electrode.

Since
ey Iy @—n, ........ (118)
the problem before us is to determine dV,/dr from a series of known values of dV,/dr.
Evidently dV,/dr is a function of r only, which we may conveniently denote by
dV,/dr = f (r), so that (118) gives

Do f)—g@—n. ... (119)

Since we consider 7 to be measured in the positive sense, f (r) = f (— r), where — #
refers to a point on that side of the electrode under consideration remote from the
second.

VOL. CCXXXIII.—A. 27
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We now divide up the interval 0 to 7 into equal intervals A, so that values of dV,/dr
may be read off from the field graph as the ordinates 4y, #s, . . . ¥, 1.

On making use of the convenient notation f (sh) = f,, equation (119) applied to the
values of dV,/dr at r = h, 2h, . . . (n — 1) b, gives at once n — 1 equations of the type

fi—foms=%, (=1,2,...0—1). . . ... ... (120)

Regarding these as a set of simultaneous equations for the determination of
fis fas « + « fan_ s 1t 18 Obvious that we have only n — 1 equations for 2n — 2 variables.
We therefore make use of observations on the side of the electrode remote from the
second.

Remembering that f (r) = f (— 7), or f (sh) = f (— sh), or f, = f _, we have a second
set of n equations of the type

fomfomre=Yow(s=1,2...m), . . ... ... (121)

in which there enter only n -+ 1 new variables. The set of equations (120) and (121)
is still insufficient in number. We therefore separate the electrodes to a distance 47 and
obtain a second graph from which the ordinates 2y, 2, . . . 25, 1 at equal intervals 4 may
be read off. We now obtain another set of 2n — 1 equations of the type

Js —fin-s =24 (s=1,2,...2n—1), . ... (122

in which there has now been introduced » — 1 new variables. The three sets (120),
(121) and (122) now give 4n — 2 equations for 4n — 2 variables which may be solved to
give numerical values of f, = f (sh) at equal intervals % for values of s from 1 to 4n — 1,
with the omission of f;,, which does not enter into the equations. As some of the
equations are redundant, it is necessary to use observations for electrode separation 41
along the line joining them remote from either.

Since o/p, = — (2rn/I)r2 dV,/dr = — (2r/1) (sh)? f,, we are able to construct the
graph for the surface-gradient characteristic due to a single electrode in a form suitable
for comparison with theoretical values, or for analysis by graphical integration, making
use of HANKEL’S inversion theorem in the manner described in the writer’s first paper.*
As the influence of the lower layers is shown up in the graph of o/p, for values of r of the
order of the depth, the necessity of working with as large electrode separations as possible
is evident.

Section 10.  Determaination of Surface Potentials for Line-Electrodes.

If, for practical reasons, it is found desirable to minimize the hazard of local irregu-
larities of specific resistance near the electrode by employing a continuous line electrode,
the results of the present paper can be used without the need of constructing a special

* ¢ Proc. Roy. Soc.,” A, vol. 139, p. 262 (1933).
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theory. The theoretical procedure is to integrate the expression for the surface potential
due to current w (s) entering the medium for an element ds of the line electrode. If not
given explicitly, the surface potential is easily obtained by integrating equation (4),

— dAV,/dr = 1/(2x) . (3/r%).

In general, it follows from equation (19), that for media bounded by perfectly conducting
or insulating planes the expression for V, is of the form

—V,=1/2rn). {Blogr —Z B, K, (29}, . . . .. .. (123)

in which the depth-constants are contained in the B’s and A’s, the latter being the roots
of an equation of condition. When the specific resistance is continuous throughout an
infinite depth from the surface, or from the last plane of discontinuity of p, the summation
must be replaced by a definite integral.

We proceed to consider a few simple examples in which V, may be integrated along a
line electrode.

Example 1.  Circular Line Electrode of Radius a.

If w is the current introduced per unit length of electrode, V, the required surface
potential at distance r from the centre of the circle, an element at (@, 0) introduces
current wad 6, so that an expression of the type (123) requires us to evaluate the
integrals in the formula

— V= (%wo&/w)[Brr log (2 + a® — 2ar cos 6)* d6
0

—Z BsJ%KO{ks (r* 4 a® — 2ar cos 0)¢}d6]. ... (129)
s 0

The first integral is 2= loga or 2x logr according as r < or > a. In view of the

expansion, (]7 | < |a ),

K, {7, (r2 + a® — 2ar cos 0)} = I, (A7) . Ko (2 @) 4 22 1, (As) K,y (A @) cosmb  (125)*
m=1

the second integral is
2r I, (A7) . Kg (A0), 0r 27 Iy (A0) . Ko (A7)

according as r < or > a.
Thus
— dV,/dr = wa Z BaJ, (An) . Ky (Ma), (0 <7 <a),

or 1 . (126)
— dV,/dr = wa/r + wa = BAK, (A7) . L) (ha), (@a<r < ®) |

* Warson, § 11.41 (8).

2272


http://rsta.royalsocietypublishing.org/

L

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

354 L. V. KING ON THE FLOW OF ELECTRIC

We may employ this procedure in the various examples worked out in the present
paper where the summation is replaced by a definite integral, and J, (Ar) or K, (A7) by
the products of two Bessel functions. The results are not, however, easily integrable
and are of no special interest.

We may combine an expression derived from (123) with (126) by writing I = — 2rwa
to obtain the surface potential due to a central electrode and a concentric circular
electrode at a great distance. It is evident, however, that the derivation of the B’s
and 2’s from the resulting expressions is a problem presenting formidable difficulties.

Example 2. Infinite Straight Line Electrode.

If V, is the required surface potential at a perpendicular distance « from the electrode,
while the current entering the medium at a distance ¢ along the electrode from the foot
of the perpendicular is wd¢, equation (123) leads to the expression

—V,= 5_;1_ [Bﬁw log (22 + ©)dg — % B, J.i . K, {, (22 + )8 dC] . (27

It is more convenient to deal with — dV,/dz which gives

® ;
_ %« — 2 [-;;TCB +X Bz | Kl{“(;fjcgjg ) dc] L. (128)

In calculating surface-potential gradients for the infinite straight line electrode, we
note the two integrals

KA (240 ., me™ i __COS AZ
L @ 1 o) dg = 5 5 and L To (0 (22 + @) dg = == (129)*

so that (128) takes the form
av,

— =t BAHEBe L L (130)

Occasionally the various examples of resistance gradients lead to comparatively simple
results which the reader will have no difficulty in proving. -

(i) Medium of Constant Specific Resistance, ¢/p, = 1. We immediately obtain
— dV,/de = we,/(mx). . . . . ..o (131)

(il) Ezponential Resistance Gradient, o/p, = ¢*"*.—The methods of Sections 5 and 8
agree in giving

dvs - m (* Kl (mw)
~ e~ {m + 2 j e dx} ....... (132)

* WATSON, § 13.47 (6) and § 13.47 (5).
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(iii) Exzponential Resistance Gradient, o/p, = e~ *™.—In this case

g 2[Rl g, (133

dx T Ja

(iv) Parabolic Reststance Gradient, o/p, = (1 + z/a)?.—It is easily proved that

_ 4V, _ we, (1 “)
— <5+.2_a ........... (135)

We may note that all the results for an infinite straight line electrode may be inde-
pendently derived from a two-dimensional version of the theory of the present paper ;
it is, however, unnecessary to develop this theory, when surface potentials for point
electrodes are known.

It will be noticed that from the theoretical point of view the expressions for surface
potential gradients due to line electrodes are never simpler than in the theory already
discussed for point electrodes. This is to be expected since the depth constants are
contained in differential equations of the type (7) or (78) which remain the same in the
two- and symmetrical three-dimensional theory.

Section 11. Note on the Determination of the Depth Constants.

When a straight line electrode is of finite length, as it must be in practice, the integrals
in (127) must be taken between finite limits 4 I, and cannot easily be evaluated. It is
to be noted, however, that (130), expressed as a series of exponentials, is considerably
simpler as a subject for analysis than the corresponding expression for the point
electrode, involving the functions K, (2,7). We may write (}30) in the form

5/t =T (r) = B/r + X BAK, (rs). /1,

where the left-hand side may be supposed known from field observations. If we now
replace 72 by 22 + 2, and integrate with respect to { between 0 and o, we have by
(129)

2 [P+ ) =14 [B—{—%Bse”s”‘], .. (136)

in which the left-hand side may be computed by graphical integration for a series of
values of «, preferably at equal intervals, from the known graph of F (r) plotted against 7.
This means that from a series of observations with two electrodes, it is possible to com-
pute the surface potential gradients characteristic of an infinite straight line electrode.
The advantage in doing so is that it now becomes theoretically possible to determine
the B’sand 2’s by PrRoNY’s method* of expressing a function tabulated at equal intervals

* WaITTAKER and RoBinson, “ Calculus of Observations,” § 180, p. 369.

273
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by a sum of exponentials. Should the method prove to be practical in spite of somewhat
heavy arithmetical labour, the results, interpreted by theory would lead to the possibility
of determining the electrical depth constants from the results of field observations. If,
for instance, the A’s should tend to equality, the inference is that the resistance gradient
tends to be a continuous function of the depth, theoretically determinable from a possible

solution of LapPLACE’s integral equation, f (z) = r e~ "¢ (t) dt. Should the »’s be widely
0

separated in value, it may be concluded that the resistance gradient shows dis-
continuity, and there is a possibility of computing the stratification constants,
thickness, specific resistance, and depths of the discontinuous layers from the numerical
values of the B’s and A’s computed by PrRoNY’s method of “‘ exponential analysis ” just
cited. The further development of this procedure is best dealt with in connection with
the general theory of multiply-stratified media which the writer hopes to deal with in a
future communication.

Section 12.  Summary and Conclusions.

(1) The theory of current-flow in a semi-infinite medium in which the specific
resistance is a continuous function of the depth is developed for the special case where
the current is introduced at a single surface electrode.

(2) Using the electrical stream-function ¢, the solution depends on a differential
equation of the Sturm-Liouville type.

(8) The theory of Sturm-Liouville expansions, especially adapted to the single-
electrode problem, is developed for a medium bounded by a perfectly insulating or
conducting plane parallel to the surface.

(4) In the limiting case when the boundary plane is at an infinite distance, the
expansion for ¢ becomes a definite integral into which enter determinate factors
depending on the assigned law of variation of specific resistance with depth.

(5) The calculation of the surface potential is carried out for a number of simple
laws of variation of specific resistance with depth, often leading to integrable results.

(6) The resistance gradients p/p, = (1 + 2/a)", in which m is unrestricted, are worked
out in some detail as an application of the general theory.

(7) The general theory for the direct determination of the potential V is outlined.
Although the resulting values are of different form to those obtained by the use of the
stream-function ¢, they are shown to be related by a general theorem involving contour
integration.

(8) Several resistance gradients are worked out in terms of the potential V and
the results are found to agree with previous calculations.

(9) Applications to practical geophysical prospecting are considered in some detail.
In particular, it is shown how the depth determination of an insulating stratum may be
corrected for a surface gradient of specific resistance.
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(10) A method is suggested for taking field observations in such a way that from
two-electrode surface potential gradients, the * surface-gradient characterictic ” due
to a single electrode may be obtained. The latter is better suited to analysis for the
determination of the depth constants.

(11) A few examples are worked out for surface potentials from continuous line
electrodes, such as the infinite line and the circle. In general, it is found that the results
are more difficult to interpret than those from the single electrode.

(12) By a series of graphical integrations, making use of the single-electrode ““surface-
gradient characteristic,” it is shown how the potential gradients due to an infinite
straight line electrode may be obtained. The latter are especially well suited to a
process of exponential analysis, and to the ultimate determination of the electrical
depth constants.

ArpEnDIX L
Note on Integrals of the Form r I%_((—zz)_) dz, (— o <v < ®).
o K,

It is known that the function K, (z) has no zeros on the positive portion of the real
axis, no purely imaginary zeros, and no zero within the quadrant corresponding to
0 <argz < gm.* A large number of interesting integrals may be derived by integrating
¢ (2)/K, (z) along a contour formed by the positive parts of the real and imaginary
axes with a quadrantal arc (in the first quadrant) of a circle whose radius is made to
tend to infinity, the contour having a quadrantal indentation at the origin.

Example 1. In particular, consider
[Selde L (i)
K, (z) z~’
where (¢ — 1) is positive and real, in which case the asymptotic formula for K, (zt) shows
that the contribution of the infinite quadrant is zero. Near the origin

K, (z) ~ 1. (1), v —1),
and when v = 0, () ~ 3. (3) I([v]—1)

Ko(2) ~(y+logde), . . ... ... .. .. (1)
where the positive value of v, denoted by | v |, is taken since
K,@=K,@#. ............. (iii)
It follows at once that the contribution due to the indentation is
fmagmLoo oo (iv)
Along the imaginary axis, z = 1y, and
K, (1) = imi é™ Hy® (— y) = }ni e (], ) —<Y, ()} . . ... Wt

* Wartson, § 15.7.
T Watson, § 3.7 (8) and § 3.62 (5).
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Since there are no zeros in the contour, we may write

ro KV (1‘5) @ a J“’ J,, (?/If) — @Yv (?/t) L_iﬂ
0 0 J,,(y)—"’/Yv(y) Y

== %ﬂ:it“”'.

Equating real and imaginary parts, we have, in particular

Y(:e/t) ()~Jy(yt)Y”(y)gz_=ln_y . _
ja Y2 (y)FJ2(y) Y Imt= I<t<ow) o ... (Vi)

a result which is easily seen to hold for v = 0.
The integral is obviously discontinuous at ¢ = 1, and for v = 4- } is easily seen to be
equivalent to

[ sin¢—1) g3 %/_—_ I, (1<t<®)
With a slight change of notation, this is the integral (58) used in Section 6.

Example 2. Consider r KK”*—IZL)—) H,® (r2) dz around the same contour as in
0

Example 1 above. As before when ¢ is real and greater than 1, the infinite quadrant
contributes nothing to the integral.
Since H,W (r2) = Jq (12) + ¢ Y, (r2), near the origin

HyW (r2) ~ 1419 (2/n) {y + logdr 4+ logz), . . . . . .. (vii)
from which it follows, making use of (ii), that near the origin

(2v/2) £~V {1 + ¢ (2/7) (y + log 3r 4 log2)}, (0 < v < =)

S 1, ) ~ | @i/ ), (v=0)
’ Lyz =0 {1 + ¢ (2/x) (v + log 37 -+ log 2)}, (—oo <v<O0).
(viii)*

Thus, since there are no zeros of K, (2) in the contour, we have, making use of (v) and
H,® (iry) = — (2/x) 1K, (ry), the result

K Ko 6 g3, () + Y, (1) do

()

14

mavt= 0 {1 4 (24/x) (v - log 37)}

2 T, ) — oY, () 2 =4 —
+i], L= =Y o v

* Warsox, § 3.6 (1), § 3.51 (2), § 3.54 (2).
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Equating real and imaginaries, we have, in particular

_ r K, (@) 5 (r2) do = 2 r Y () Jo () — I, (90) Yo (9)} K, (ry) dy

K, (@) =g YEW) T2 ()
230 (y + log 4r)
+< 1/ . (ix)
0

according as v is positive, zero, or negative respectively.

With a slight change of notation the result (ix) identifies the expressions (59) and (96)
for the potentials obtained by methods of Sections 6 and 8. It will be noticed that as
derived in these sections the potentials may differ by a constant of integration whose
value is thus deduced by contour integration.

Example 3. When ¢t = 1, the convergence of the integral of Example 2 on the infinite

quadrant fails. We note, however, that j{K”“ (Izi) (—z)K” (2} .Ho® (r2) dz is con-

vergent on the infinite quadrant, which contributes nothing since the integrand is of
the order 2~ for large values of z. Along the real and imaginary axes we may take
the integral in two portions. If we make use of the known integrals

j: Jo (r2) dz = 1/r, j: Y, (r) = 0, j: Ko (ry) dy = infr, . . . (x)*

we easily find that
2v (v + log 1r)
* K, () e 27 Ko(ry) dy :
j K @) Jo (rz) dz = = jo Y+ T2 (1) ;e . (x)

according as v is positive, zero or negative, In other words (ix) is valid for t = 1, a
result which justifies the derivation of (61), and shows that except for a constant of
integration the values of V, as derived in Sections 6 and 8 are equivalent while the
values of g/p, are identical.

[The writer is greatly indebted to the referees for valuable criticism and advice on
several points involving mathematical rigour. ]

* Warson, § 13.21 (8), § 13.3 (8).
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